Equivalences of Derived Categories and K3 Surfaces
نویسنده
چکیده
We consider derived categories of coherent sheaves on smooth projective varieties. We prove that any equivalence between them can be represented by an object on the product. Using this, we give a necessary and sufficient condition for equivalence of derived categories of two K3 surfaces.
منابع مشابه
A Stronger Derived Torelli Theorem for K3 Surfaces
In an earlier paper the notion of a filtered derived equivalence was introduced, and it was shown that if two K3 surfaces admit such an equivalence then they are isomorphic. In this paper we study more refined aspects of filtered derived equivalences related to the action on the cohomological realizations of the Mukai motive. It is shown that if a filtered derived equivalence between K3 surface...
متن کاملSurfaces via Almost - Primes
Based on the result on derived categories on K3 surfaces due to Mukai and Orlov and the result concerning almost-prime numbers due to Iwaniec, we remark the following facts: (1) For any given positive integer N , there are N (mutually non-isomorphic) projective complex K3 surfaces such that their Picard groups are not isomorphic but their transcendental lattices are Hodge isometric, or equivale...
متن کاملEquivalences in Bicategories
In this paper, we establish some connections between the concept of an equivalence of categories and that of an equivalence in a bicategory. Its main result builds upon the observation that two closely related concepts, which could both play the role of an equivalence in a bicategory, turn out not to coincide. Two counterexamples are provided for that goal, and detailed proofs are given. In par...
متن کاملOn the Finite Dimensionality of a K3 Surface
For a smooth projective surface X the finite dimensionality of the Chow motive h(X), as conjectured by S.I Kimura, has several geometric consequences. For a complex surface of general type with pg = 0 it is equivalent to Bloch’s conjecture. The conjecture is still open for a K3 surface X which is not a Kummer surface. In this paper we give some evidence to Kimura’s conjecture for a K3 surface :...
متن کاملON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY
Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996